lunes, 15 de noviembre de 2010

QUE ES UN BLOG

Un blog, o en español también una bitácora, es un sitio web periódicamente actualizado que recopila cronológicamente textos o artículos de uno o varios autores, apareciendo primero el más reciente, donde el autor conserva siempre la libertad de dejar publicado lo que crea pertinente. El nombre bitácora está basado en los cuadernos de bitácora, cuadernos de viaje que se utilizaban en los barcos para relatar el desarrollo del viaje y que se guardaban en la bitácora. Aunque el nombre se ha popularizado en los últimos años a raíz de su utilización en diferentes ámbitos, el cuaderno de trabajo o bitácora ha sido utilizado desde siempre.


Este término inglés blog o weblog proviene de las palabras web y log ('log' en inglés = diario). El término bitácora, en referencia a los antiguos cuadernos de bitácora de los barcos, se utiliza preferentemente cuando el autor escribe sobre su vida propia como si fuese un diario, pero publicado en la web (en línea).

DESCRIPCION:

Habitualmente, en cada artículo de un blog, los lectores pueden escribir sus comentarios y el autor darles respuesta, de forma que es posible establecer un diálogo. No obstante es necesario precisar que ésta es una opción que depende de la decisión que tome al respecto el autor del blog, pues las herramientas permiten diseñar blogs en los cuales no todos los internautas -o incluso ninguno- puedan participar agregando comentarios. El uso o tema de cada blog es particular, los hay de tipo: periodístico, empresarial o corporativo, tecnológico, educativo (edublogs), políticos, personales (Contenidos de todo tipo), etc.
HISTORIA:


Antes de que los blogs se hicieran populares, existían comunidades digitales como USENET,xrt listas de correo electrónico y BBS. En los años 90 los programas para crear foros de internet, como por ejemplo WebEx, posibilitaron conversaciones con hilos. Los hilos son mensajes que están relacionados con un tema del foro.


1994-2000:


El blog moderno es una evolución de los diarios en línea, donde la gente escribía sobre su vida personal, como si fuesen un diario íntimo pero en red. Las páginas abiertas Webring incluían a miembros de la comunidad de diarios en línea. Justin Hall, quien escribió desde 1994 su blog personal, mientras era estudiante de la Universidad de Swarthmore, es reconocido generalmente como uno de los primeros blogueros.[1]
También había otras formas de diarios en línea. Un ejemplo era el diario del programador de juegos John Carmack, publicado mediante el protocolo Finger. Los sitios web, como los sitios corporativos y las páginas web personales, tenían y todavía tienen a menudo secciones sobre noticias o novedades, frecuentemente en la página principal y clasificados por fecha. Uno de los primeros precursores de un blog fue el sitio web personal de Kibo, actualizado mediante USENET.


Los primeros blogs eran simplemente componentes actualizados de sitios web comunes. Sin embargo, la evolución de las herramientas que facilitaban la producción y mantenimiento de artículos web publicados y ordenados de forma cronológica, hizo que el proceso de publicación pudiera dirigirse hacia muchas más personas, y no necesariamente a aquellos que tuvieran conocimientos técnicos. Últimamente, esto ha llevado a que en la actualidad existan diversos procedimientos para publicar blogs. Por ejemplo, el uso de algún tipo de software basado en navegador, es hoy en día un aspecto común del blogging. Los blogs pueden ser construidos y almacenados usando servicios de alojamiento de blogs dedicados, o pueden ser concretados y accedidos mediante software genérico para blogs, como por ejemplo usando los productos Blogger o LiveJournal, o mediante servicios de alojamiento web corrientes.
DEFINICION DE WIKIPEDIA

Wikipedia es un proyecto de la Fundación Wikimedia (una organización sin ánimo de lucro) para construir una enciclopedia libre[2] y políglota. Los más de 16 millones de artículos de Wikipedia[3] han sido redactados conjuntamente por voluntarios de todo el mundo, y prácticamente todos pueden ser editados por cualquier persona que pueda acceder a Wikipedia.[4] Iniciada en enero de 2001 por Jimmy Wales y Larry Sanger,[5] es actualmente la mayor y más popular[6] obra de consulta en Internet.[7] [8] [9]


Desde su fundación, Wikipedia no sólo ha ganado en popularidad —se encuentra entre los 10 sitios web más populares del mundo[10] [11] —, sino que su éxito ha propiciado la aparición de proyectos hermanos. No obstante, existen detractores que la han acusado de parcialidad sistémica e inconsistencias,[12] y sus críticas se han centrado en su política de favorecer el consenso sobre las credenciales en su proceso editorial, lo que se ha denominado antielitismo.[13] Otras críticas se centran en su susceptibilidad de ser vandalizada y en la adición de información espuria o falta de verificación,[14] aunque estudios eruditos sugieren que el vandalismo generalmente es eliminado con prontitud.[15] [16]


Existe, además, controversia sobre su fiabilidad y precisión.[17] En este sentido, la revista científica Nature declaró en diciembre de 2005 que la Wikipedia en inglés era casi tan exacta en artículos científicos como la Encyclopaedia Britannica.[18] Por otro lado, y según consta en un reportaje publicado en junio de 2009 por el periódico español El País, un estudio dirigido en 2007 por Pierre Assouline, periodista francés, y realizado por un grupo de alumnos del máster de Periodismo del Instituto de Estudios Políticos de París para analizar la fiabilidad del proyecto se materializó en un libro titulado La revolución Wikipedia (Alianza) cuyas conclusiones son bastante críticas: Entre otras cosas declaraban que el estudio de Nature fue poco estricto y sesgado, así como que, según su propio estudio, la Britannica continuaba siendo un 24% más fiable que la Wikipedia.[19]


Actualmente Wikipedia presenta ediciones en 271 idiomas.[20] Doce ediciones superan los 300.000 artículos: inglés, alemán, francés, polaco, italiano, japonés, español, holandés, portugués, ruso, sueco y chino. La versión en alemán ha sido distribuida en DVD-ROM, y se tiene la intención de hacer una versión inglesa en DVD con más de 2000 artículos.[21] Muchas de sus ediciones han sido replicadas a través de Internet (mediante «espejos») y han dado origen a enciclopedias derivadas (bifurcaciones) en otros sitios
Etimología


Elemento denominativo de la marca corporativa de Wikipedia. Se continúa con el eslogan «La enciclopedia libre».La palabra Wikipedia, nombre propio acuñado originalmente por los creadores de la Wikipedia en inglés a principios de 2001, es la contracción de wiki wiki, 'rápido' en hawaiano, y encyclopedia, 'enciclopedia' en inglés. Este nombre es pronunciado en inglés como ˌwɪkɨˈpiːdi.ə (?·i) o ˌwɪkiˈpiːdi.ə (AFI).


La Wikipedia en español, creada poco después, heredó el nombre. Tras una votación realizada entre septiembre y noviembre de 2003 por parte de los usuarios de esta Wikipedia, se decidió seguir usando el mismo término para designarla. En la votación se barajaron además los siguientes nombres propuestos (por orden de popularidad): Librepedia, Huiquipedia, Uiquipedia, Güiquipedia, Viquipedia, Ñiquipedia, Velozpedia, Limonpedia, Güisquipedia y Velocipedia.[22]


Otros que también usaron el nombre Wikipedia fueron los idiomas (ordenado según el ISO 639-3): alemán, bretón, corso, danés, euskera, filipino, finlandés, gallego, holandés, indonesio, islandés, italiano, nauruano, noruego, polaco, rumano, siciliano, somalí, suajili y el sueco.
REDES SOCIALES

Las redes sociales son estructura sociales compuestas de grupos de personas, las cuales están conectadas por uno o varios tipos de relaciones, tales como amistad, parentesco, intereses comunes o que comparten conocimientos.


El análisis de redes sociales estudia esta estructura social aplicando la Teoría de Grafos e identificando las entidades como "nodos" o "vértices" y las relaciones como "enlaces" o "aristas". La estructura del grafo resultante es a menudo muy compleja. Como se ha dicho, puede haber muchos tipos de lazos entre los nodos. La investigación multidisciplinar ha mostrado que las redes sociales operan en muchos niveles, desde las relaciones de parentesco hasta las relaciones de organizaciones a nivel estatal (se habla en este caso de Redes políticas), desempeñando un papel crítico en la determinación de la agenda política y el grado en el cual los individuos o las organizaciones alcanzan sus objetivos o reciben influencias.


En su forma más simple, una red social es un mapa de todos los lazos relevantes entre todos los nodos estudiados. Se habla en este caso de redes "sociocéntricas" o "completas". Otra opción es identificar la red que envuelve a una persona (en los diferentes contextos sociales en los que interactúa); en este caso se habla de "red personal".


La red social también puede ser utilizada para medir el capital social (es decir, el valor que un individuo obtiene de los recursos accesibles a través de su red social). Estos conceptos se muestran, a menudo, en un diagrama donde los nodos son puntos y los lazos, líneas.


Contenido [ocultar]


Historia del análisis de redes sociales
Linton Freeman ha escrito la historia del progreso de las redes sociales y del análisis de redes sociales.[7]


Los precursores de las redes sociales, a finales del siglo XVIII incluyen a Émile Durkheim y a Ferdinand Tönnies. Tönnies argumentó que los grupos sociales pueden existir bien como lazos sociales personales y directos que vinculan a los individuos con aquellos con quienes comparte valores y creencias (gemeinschaft), o bien como vínculos sociales formales e instrumentales (gesellschaft). Durkheim aportó una explicación no individualista al hecho social, argumentando que los fenómenos sociales surgen cuando los individuos que interactúan constituyen una realidad que ya no puede explicarse en términos de los atributos de los actores individuales. Hizo distinción entre una sociedad tradicional -con "solidaridad mecánica"- que prevalece si se minimizan las diferencias individuales; y una sociedad moderna -con "solidaridad orgánica"- que desarrolla cooperación entre individuos diferenciados con roles independientes.


Por su parte, Georg Simmel a comienzos del siglo XX, fue el primer estudioso que pensó directamente en términos de red social. Sus ensayos apuntan a la naturaleza del tamaño de la red sobre la interacción y a la probabilidad de interacción en redes ramificadas, de punto flojo, en lugar de en grupos. (Simmel, 1908/1971).


Después de una pausa en las primeras décadas del siglo XX, surgieron tres tradiciones principales en las redes sociales. En la década de 1930, L. Moreno J.L. Moreno fue pionero en el registro sistemático y en el análisis de la interacción social de pequeños grupos, en especial las aulas y grupos de trabajo (sociometría), mientras que un grupo de Harvard liderado por Lloyd Warner W. Lloyd Warner y Mayo Elton Mayo exploró las relaciones interpersonales en el trabajo. En 1940, en su discurso a los antropólogos británicos, A.R. Radcliffe-Brown instó al estudio sistemático de las redes.[8] Sin embargo, tomó unos 15 años antes de esta convocatoria fuera seguida de forma sistemática.


El Análisis de redes sociales se desarrolló con los estudios de parentesco de Elizabeth Bott en Inglaterra entre los años 1950, y con los estudios de urbanización del grupo de antropólogos de la Universidad de Manchester (acompañando a Max Gluckman y después a Clyde Mitchell J. Clyde Mitchell) entre los años 1950 y 1960, investigando redes comunitarias en el sur de África, India y el Reino Unido. Al mismo tiempo, el antropólogo británico Frederick Nadel SF Nadel codificó una teoría de la estructura social que influyó posteriormente en el análisis de redes.[9]


Entre los años 1960 y 1970, un número creciente de académicos trabajaron en la combinación de diferentes temas y tradiciones. Un grupo fue el de White Harrison White y sus estudiantes en el Departamento de Relaciones Sociales de la Universidad de Harvard: Ivan Chase, Bonnie Erickson, Harriet Friedmann, Granovetter Mark Granovetter, Nancy Howell, Joel Levine, Nicholas Mullins, John Padgett, Schwartz (sociologist) Michael Schwartz y Wellman Barry Wellman. Otras personas importantes en este grupo inicial fueron Charles Tilly, quien se enfocó en redes en sociología política y movimientos sociales, y Stanley Milgram, quien desarrolló la tesis de los "seis grados de separación".[10] Mark Granovetter y Barry Wellman están entre los antiguos estudiantes de White que han elaborado y popularizado el análisis de redes sociales.[11]

martes, 2 de noviembre de 2010

RSS

RSS son las siglas de RDF Site Summary or Rich Site Summary , un formato XML para sindicar o compartir contenido en la web. Se utiliza para difundir información actualizada frecuentemente a usuarios que se han suscrito a la fuente de contenidos. El formato permite distribuir contenidos sin necesidad de un navegador, utilizando un software diseñado para leer estos contenidos RSS (agregador). A pesar de eso, es posible utilizar el mismo navegador para ver los contenidos RSS. Las últimas versiones de los principales navegadores permiten leer los RSS sin necesidad de software adicional. RSS es parte de la familia de los formatos XML desarrollado específicamente para todo tipo de sitios que se actualicen con frecuencia y por medio del cual se puede compartir la información y usarla en otros sitios web o programas. A esto se le conoce como redifusión web o sindicación web (una traducción incorrecta, pero de uso muy común).
Redifusión web
Artículo principal: Redifusión web
El principal medio de redifusión web es vía fuentes web, siendo RSS el formato más común de fuente web.


La redifusión web no es sólo un fenómeno vinculado a los weblogs, aunque han ayudado mucho a su popularización. Siempre se han redifundido contenidos y se ha compartido todo tipo de información en formato XML, de esta forma podemos ofrecer contenidos propios para que sean mostrados en otras páginas web de forma integrada, lo que aumenta el valor de la página que muestra el contenido y también nos genera más valor, ya que normalmente la redifusión web siempre enlaza con los contenidos originales.


Pero lo verdaderamente importante es que, a partir de este formato, se está desarrollando una cadena de valor nueva en el sector de los contenidos que está cambiando las formas de relación con la información tanto de los profesionales y empresas del sector como de los usuarios. Varias empresas están explorando nuevas formas de uso y distribución de la información.
WED 2.0

El término Web 2.0 (2004–presente) está comúnmente asociado con un fenómeno social, basado en la interacción que se logra a partir de diferentes aplicaciones en la web, que facilitan el compartir información, la interoperabilidad, el diseño centrado en el usuario o D.C.U. y la colaboración en la World Wide Web. Ejemplos de la Web 2.0 son las comunidades web, los servicios web, las aplicaciones Web, los servicios de red social, los servicios de alojamiento de videos, las wikis, blogs, mashups y folcsonomías. Un sitio Web 2.0 permite a sus usuarios interactuar con otros usuarios o cambiar contenido del sitio web, en contraste a sitios web no-interactivos donde los usuarios se limitan a la visualización pasiva de información que se les proporciona.


La Web 2.0 esta asociada estrechamente con (Tim O'Reilly), debido a la conferencia sobre la Web 2.0 de O'Reilly Media en 2004. Aunque el término sugiere una nueva versión de la World Wide Web, no se refiere a una actualización de las especificaciones técnicas de la web, sino más bien a cambios acumulativos en la forma en la que desarrolladores de software y usuarios finales utilizan la Web. El hecho de que la Web 2.0 es cualitativamente diferente de las tecnologías web anteriores ha sido cuestionado por el creador de la World Wide Web Tim Berners-Lee , quien califico al termino como "tan solo una jerga"- precisamente porque tenía la intención de que la Web incorporase estos valores en el primer lugar.


Introducción
La red original, llamada Web 1.0, se basaba en páginas estáticas programadas en HTML (Hyper Text Mark Language) que no eran actualizadas frecuentemente. El éxito de las .com dependía de webs más dinámicas (a veces llamadas Web 1.5) donde los CMS Sistema de gestión de contenidos (Content Management System en inglés, abreviado CMS) servían páginas HTML dinámicas creadas al vuelo desde una actualizada base de datos. En ambos sentidos, el conseguir hits (visitas) y la estética visual eran considerados como factores importantes.


Los teóricos de la aproximación a la Web 2.0 creen que el uso de la web está orientado a la interacción y redes sociales, que pueden servir contenido que explota los efectos de las redes, creando o no webs interactivas y visuales. Es decir, los sitios Web 2.0 actúan más como puntos de encuentro, o webs dependientes de usuarios, que como webs tradicionales.


Origen del término
El término fue acuñado por Dale Dougherty de O'Reilly Media en una tormenta de ideas con Craig Cline de MediaLive para desarrollar ideas para una conferencia. Dougherty sugirió que la web estaba en un renacimiento, con reglas que cambiaban y modelos de negocio que evolucionaban. Dougherty puso ejemplos — "DoubleClick era la Web 1.0; Google AdSense es la Web 2.0. Ofoto es Web 1.0; Flickr es Web 2.0." — en vez de definiciones, y reclutó a John Battelle para dar una perspectiva empresarial, y O'Reilly Media, Battelle, y MediaLive lanzó su primera conferencia sobre la Web 2.0 en octubre de 2004. La segunda conferencia se celebró en octubre de 2005.


En 2005, Tim O'Reilly definió el concepto de Web 2.0. El mapa meme mostrado (elaborado por Markus Angermeier) resume el meme de Web 2.0, con algunos ejemplos de servicios.


En su conferencia, O'Reilly, Battelle y Edouard resumieron los principios clave que creen que caracterizan a las aplicaciones web 2.0: la web como plataforma; datos como el "Intel Inside"; efectos de red conducidos por una "arquitectura de participación"; innovación y desarrolladores independientes; pequeños modelos de negocio capaces de redifundir servicios y contenidos; el perpetuo beta; software por encima de un solo aparato.


En general, cuando mencionamos el término Web 2.0 nos referimos a una serie de aplicaciones y páginas de Internet que utilizan la inteligencia colectiva para proporcionar servicios interactivos en red dando al usuario el control de sus datos.

lunes, 25 de octubre de 2010

ELECTRÓNICA BÁSICA DIGITAL

Bienvenidos a Areaelectronica.com, consideraremos temas asumidos a laElectrónica, en principio Electrónica básica, que a día de hoy se ha convertido en un factor determinante dentro de la "neo-tecnología". En primer término, es una ciencia dentro de la física basada en semiconductores y sus circuitos electrónicos y más detalladamente aún loscircuitos electrónicos integrados, poseen uniones como lo son los diodos, transistores, tiristores, etc. Y también la formación de circuitos electrónicos básicos como Amplificadores, Osciladores, Multivibradores, Convertidores, entre otros, y algunos componentes pasivos como las resistencias, condensadores, bobinados.


La Electrónica se puede dividir en dos grandes grupos: la electrónicaanalógica y la electrónica digital.


En esta web trataremos de detallar cada uno de los item ya dados y también tendremos un blog sobre electrónica que tendrá artículos relacionados con ésta y de actualidad.
ELECTRÓNICA ANALÓGICA

Transistor bipolar, componente muy usado en sistemas analógicos.


La electrónica analógica es una parte de la electrónica que estudia los sistemas en los cuales sus variables; tensión, corriente, ..., varian de una forma continua en el tiempo, pudiendo tomar infinitos valores (teóricamente al menos). En contraposición se encuentra la electrónica digital donde las variables solo pueden tomar valores discretos, teniendo siempre un estado perfectamente definido.


Pongamos un ejemplo:


Disponemos de una medida real concreta; la longitud total de un coche, por ejemplo.


En un sistema digital esta medida podría ser de 4 metros o de 4 metros y 23 centímetros. Podremos darle la precisión que queramos pero siempre serán cantidades enteras


En un sistema analógico la medida seria la real; es decir 4,233648596... en teoría hasta que llegásemos a la mínima cantidad de materia existente (siempre que el sistema de medida sea lo suficientemente exacto).
FUENTES DE ALIMENTACION

Fuentes de alimentación externas.


En electrónica, una fuente de alimentación es un dispositivo que convierte la tensión alterna de la red de suministro, en una o varias tensiones, prácticamente continuas, que alimentan los distintos circuitos del aparato electrónico al que se conecta (ordenador, televisor, impresora, router, etc.).


Clasificación


Las fuentes de alimentación, para dispositivos electrónicos, pueden clasificarse básicamente como fuentes de alimentación lineales y conmutadas. Las lineales tienen un diseño relativamente simple, que puede llegar a ser más complejo cuanto mayor es la corriente que deben suministrar, pero sin embargo su regulación de tensión es poco eficiente. Una fuente conmutada, de las misma potencia que una lineal, será más pequeña y normalmente más eficiente pero será más compleja y por tanto más susceptible a averías.
PRINCIPIOS BASICOS DE LA ELECTRICIDAD

Los protones y los neutrones se combinan en un pequeño grupo llamado núcleo. Para poder comprender mejor las propiedades eléctricas de los elementos/materiales, busque "helio" (He) en la tabla periódica. El número atómico del helio es 2, lo que significa que tiene 2 protones y 2 electrones. Su peso atómico es 4. Si se le resta el número atómico (2) al peso atómico (4), se puede determinar que el helio también tiene 2 neutrones.
El físico danés Niels Bohr desarrolló un modelo simplificado para ilustrar el átomo. Si los protones y los neutrones de un átomo tuvieran el tamaño de una pelota de fútbol Nro. 5, en el medio de un estadio de fútbol, la única cosa más pequeña que la pelota serían los electrones. Los electrones tendrían el tamaño de una cereza, y estarían orbitando cerca de los últimos asientos del estadio. En otras palabras, el volumen total de este átomo, incluido el recorrido de los electrones, tendría el tamaño del estadio. El núcleo del átomo donde se encuentran los protones y los neutrones tendría el tamaño de la pelota de fútbol.
Una de las leyes de la naturaleza, denominada Ley de la Fuerza Eléctrica de Coulomb, especifica que las cargas opuestas reaccionan entre sí con una fuerza que hace que se atraigan. Las cargas de igual polaridad reaccionan entre sí con una fuerza que hace que se repelan. En el caso de cargas opuestas y de igual polaridad, la fuerza aumenta a medida que las cargas se aproximan. La fuerza es inversamente proporcional al cuadrado de la distancia de separación. Cuando las partículas se encuentran muy cerca una de la otra, la fuerza nuclear supera la fuerza eléctrica de repulsión y el núcleo se mantiene unido. Por esta razón, las partículas del núcleo no se separan.
Si la ley de Coulomb es verdadera, y si el modelo de Bohr describe los átomos de helio como estables, entonces deben intervenir otras leyes de la naturaleza. ¿Cómo es posible que ambas sean verdaderas?
TEORIA ATOMICA

La teoría atómica comenzó hace miles de años como un concepto filosófico, y fue en el siglo XIX cuando logró una extensa aceptación científica gracias a los descubrimientos en el campo de la estequiometría. Los químicos de la época creían que las unidades básicas de los elementos también eran las partículas fundamentales de la naturaleza y las llamaron átomos (de la palabra griega atomos, que significa "indivisible"). Sin embargo, a finales de aquel siglo, y mediante diversos experimentos con el electromagnetismo y la radiactividad, los físicos descubrieron que el denominado "átomo indivisible" era realmente un conglomerado de diversas partículas subatómicas (principalmente electrones, protones y neutrones), que pueden existir de manera separada. De hecho, en ciertos ambientes, como en las estrellas de neutrones, la temperatura extrema y la elevada presión impide a los átomos existir como tales. El campo de la ciencia que estudia las partículas fundamentales de la materia se denomina física de partículas.
LOS TRANSISTORES

El transistor es un dispositivo electrónico semiconductor que cumple funciones de amplificador, oscilador, conmutador o rectificador. El término "transistor" es la contracción en inglés de transfer resistor ("resistencia de transferencia"). Actualmente se los encuentra prácticamente en todos los aparatos domésticos de uso diario: radios, televisores, grabadoras, reproductores de audio y video, hornos de microondas, lavadoras, automóviles, equipos de refrigeración, alarmas, relojes de cuarzo, computadoras, calculadoras, impresoras, lámparas fluorescentes, equipos de rayos X, tomógrafos, ecógrafos, reproductores mp3,El transistor bipolar fue inventado en los Laboratorios Bell de EE. UU. en diciembre de 1947 por John Bardeen, Walter Houser Brattain y William Bradford Shockley, quienes fueron galardonados con el Premio Nobel de Física en 1956. Fue el sustituto de la válvula termoiónica de tres electrodos, o triodo.
historia:
Al principio se usaron transistores bipolares y luego se inventaron los denominados transistores de efecto de campo (FET). En los últimos, la corriente entre la fuente y la pérdida (colector) se controla usando un campo eléctrico (salida y pérdida (colector) menores). Por último, apareció el MOSFET (transistor FET de tipo metal-óxido-semiconductor). Los MOSFET permitieron un diseño extremadamente compacto, necesario para los circuitos altamente integrados (IC). Hoy la mayoría de los circuitos se construyen con la denominada tecnología CMOS (semiconductor de óxido metálico complementario). La tecnología CMOS es un diseño con dos diferentes MOSFET (MOSFET de canal n y p), que se complementan mutuamente y consumen muy poca corriente en un funcionamiento sin carga.


El transistor consta de un sustrato (usualmente silicio) y tres partes dopadas artificialmente (contaminadas con materiales específicos en cantidades específicas) que forman dos uniones bipolares, el emisor que emite portadores, el colector que los recibe o recolecta y la tercera, que está intercalada entre las dos primeras, modula el paso de dichos portadores (base). A diferencia de las válvulas, el transistor es un dispositivo controlado por corriente y del que se obtiene corriente amplificada. En el diseño de circuitos a los transistores se les considera un elemento activo, a diferencia de los resistores, capacitores e inductores que son elementos pasivos. Su funcionamiento sólo puede explicarse mediante mecánica cuántica.


De manera simplificada, la corriente que circula por el "colector" es función amplificada de la que se inyecta en el "emisor", pero el transistor sólo gradúa la corriente que circula a través de sí mismo, si desde una fuente de corriente continua se alimenta la "base" para que circule la carga por el "colector", según el tipo de circuito que se utilice. El factor de amplificación o ganancia logrado entre corriente de base y corriente de colector, se denomina Beta del transistor. Otros parámetros a tener en cuenta y que son particulares de cada tipo de transistor son: Tensiones de ruptura de Colector Emisor, de Base Emisor, de Colector Base, Potencia Máxima, disipación de calor, frecuencia de trabajo, y varias tablas donde se grafican los distintos parámetros tales como corriente de base, tensión Colector Emisor, tensión Base Emisor, corriente de Emisor, etc. Los tres tipos de esquemas(configuraciones) básicos para utilización analógica de los transistores son emisor común, colector común y base común.


Modelos posteriores al transistor descrito, el transistor bipolar (transistores FET, MOSFET, JFET, CMOS, VMOS, etc.) no utilizan la corriente que se inyecta en el terminal de "base" para modular la corriente de emisor o colector, sino la tensión presente en el terminal de puerta o reja de control y gradúa la conductancia del canal entre los terminales de Fuente y Drenador. De este modo, la corriente de salida en la carga conectada al Drenador (D) será función amplificada de la Tensión presente entre la Puerta (Gate) y Fuente (Source). Su funcionamiento es análogo al del triodo, con la salvedad que en el triodo los equivalentes a Puerta, Drenador y Fuente son Reja, Placa y Cátodo.


Los transistores de efecto de campo, son los que han permitido la integración a gran escala que disfrutamos hoy en día, para tener una idea aproximada pueden fabricarse varios miles de transistores interconectados por centímetro cuadrado y en varias capas superpuestas.
teléfonos móviles, etc.
ELECTRICIDAD

La electricidad (del griego elektron, cuyo significado es ámbar) es un fenómeno físico cuyo origen son las cargas eléctricas y cuya energía se manifiesta en fenómenos mecánicos, térmicos, luminosos y químicos, entre otros[1] [2] [3] [4] , en otras palabras es el flujo de electrones. Se puede observar de forma natural en fenómenos atmosféricos, por ejemplo los rayos, que son descargas eléctricas producidas por la transferencia de energía entre la ionosfera y la superficie terrestre (proceso complejo del que los rayos solo forman una parte). Otros mecanismos eléctricos naturales los podemos encontrar en procesos biológicos, como el funcionamiento del sistema nervioso. Es la base del funcionamiento de muchas máquinas, desde pequeños electrodomésticos hasta sistemas de gran potencia como los trenes de alta velocidad, y asimismo de todos los dispositivos electrónicos.[5] Además es esencial para la producción de sustancias químicas como el aluminio y el cloro.


También se denomina electricidad a la rama de la física que estudia las leyes que rigen el fenómeno y a la rama de la tecnología que la usa en aplicaciones prácticas. Desde que, en 1831, Faraday descubriera la forma de producir corrientes eléctricas por inducción —fenómeno que permite transformar energía mecánica en energía eléctrica— se ha convertido en una de las formas de energía más importantes para el desarrollo tecnológico debido a su facilidad de generación y distribución y a su gran número de aplicaciones.


La electricidad en una de sus manifestaciones naturales: el relámpago.La electricidad es originada por las cargas eléctricas, en reposo o en movimiento, y las interacciones entre ellas. Cuando varias cargas eléctricas están en reposo relativo se ejercen entre ellas fuerzas electrostáticas. Cuando las cargas eléctricas están en movimiento relativo se ejercen también fuerzas magnéticas. Se conocen dos tipos de cargas eléctricas: positivas y negativas. Los átomos que conforman la materia contienen partículas subatómicas positivas (protones), negativas (electrones) y neutras (neutrones). También hay partículas elementales cargadas que en condiciones normales no son estables, por lo que se manifiestan sólo en determinados procesos como los rayos cósmicos y las desintegraciones radiactivas.


La electricidad y el magnetismo son dos aspectos diferentes de un mismo fenómeno físico, denominado electromagnetismo, descrito matemáticamente por las ecuaciones de Maxwell. El movimiento de una carga eléctrica produce un campo magnético, la variación de un campo magnético produce un campo eléctrico y el movimiento acelerado de cargas eléctricas genera ondas electromagnéticas (como en las descargas de rayos que pueden escucharse en los receptores de radio AM).


Debido a las crecientes aplicaciones de la electricidad como vector energético, como base de las telecomunicaciones y para el procesamiento de información, uno de los principales desafíos contemporáneos es generarla de modo más eficiente y con el mínimo impacto ambiental.
CIRCUITOS ELECTRICOS

Si dos cuerpos de carga igual y opuesta se conectan por medio de un conductor metálico, por ejemplo un cable, las cargas se neutralizan mutuamente. Esta neutralización se lleva a cabo mediante un flujo de electrones a través del conductor, desde el cuerpo cargado negativamente al cargado positivamente. En cualquier sistemacontinuo de conductores, los electrones fluyen desde el punto de menor potencial hasta el punto de mayor potencial. Un sistema de esa clase se denomina circuito eléctrico. La corriente que circula por un circuito se denomina corriente continua (CC) si fluye siempre en el mismo sentido y corriente alterna(CA) si fluye alternativamente en uno u otro sentido. Un circuito eléctrico es el trayecto o ruta de una corriente eléctrica. El término se utiliza principalmente para definir un trayecto continuo compuesto por conductores y dispositivos conductores, que incluyen una fuente de fuerza electromotriz que transporta la corriente por el circuito.


En este material instruccional se introducirá en forma sucinta los lineamientos básicos sobre corriente eléctrica. Se resalta el concepto de resistenciaeléctrica y su vinculación con el efecto Joule; el cual permitirá explicar la influencia del calor en la resistividad eléctrica de los materiales. La Ley de Ohm es abordada, y a partir de ella se introduce la noción de potencia eléctrica. Las Leyes de Kirchhoff son expuestas y empleadas al enseñar el método de las mallas y el método de los nodos; asimismo, se esbozará la regla del derivador de corriente y la regla del divisor de tensión, ambas usadas en el análisis de circuitoseléctricos serie – paralelo. Muy someramente, se tocará el teorema de Thevenin, el Teorema de Superposición y el Teorema de Norton. Al final, se ofrecerá una recopilación de algunos problemas que han formado parte de las evaluaciones de cohortes precedentes.
1.1 La corriente eléctrica.
El flujo de una corriente continua está determinado por tres magnitudes relacionadas entre sí. La primera es la diferencia de potencial en el circuito, que en ocasiones se denomina fuerza electromotriz (fem), tensión o voltaje. La segunda es la intensidad de corriente. Esta magnitud se mide en amperios; 1 amperio corresponde al paso de unos 6.250.000.000.000.000.000 electrones por segundo por una sección determinada del circuito. La tercera magnitud es la resistencia del circuito. Normalmente, todas las sustancias, tanto conductores como aislantes, ofrecen cierta oposición al flujo de una corriente eléctrica, y esta resistencia limita la corriente. La unidad empleada para cuantificar la resistencia es el ohmio (), que se define como la resistencia que limita el flujo de corriente a 1 amperio en un circuito con una fem de 1 voltio.


Cuando una corriente eléctrica fluye por un cable pueden observarse dos efectos importantes: la temperatura del cable aumenta y un imán o brújula colocada cerca del cable se desvía, apuntando en dirección perpendicular al cable. Al circular la corriente, los electrones que la componen colisionan con los átomos del conductor y ceden energía, que aparece en forma de calor.


Hasta aquí, se ha abordado muy someramente lo que es corriente eléctrica, pero, ¿cómo se produce la corriente eléctrica?. Imaginemos el incontable número de electrones concentrados en una terminal del generador (una batería, un generador o cualquier dispositivo que cree una fem). Se repelen o se empujan los unos a los otros, pero sin tener lugar donde desplazarse si no existe un camino o circuito eléctrico. Ahora bien si conectamos un hilo de cobre entre el citado Terminal y el otro del mismo generador (donde hay escasezde electrones) se habrá establecido un circuito eléctrico. Los electrones del terminal negativo empujaran los electrones libres del hilo, siendo alejados del terminal propagándose esta accióncasi instantáneamente de un extremo al otro del hilo. Consecuencia de ello es que inmediatamente comenzarán los electrones a desplazarse por el hilo, avanzando hacia el terminal positivo del generador en el cual la presencia de electrones es escasa.


Un electrón considerado en particular no se desplaza necesariamente de uno al otro extremo del circuito eléctrico. Solo puede hacerlo en una pequeña fracción de centímetro por minuto; pero en cambio su empuje se propaga casi instantáneamente de uno al otro extremo del circuito. Para mejor comprensión sigamos la acción de un solo electrón desde el instante en que se cierra el circuito entre bornes del generador, y supongamos que dicho electrón estaba en el terminal negativo donde están concentrados en gran número.


El electrón ejerce un empuje sobre los que le rodean y, a su vez, es empujado por éstos. Cuando se cierra el circuito, este electrón es expulsado del terminal y penetra en el hilo de cobre que forma el circuito, para ser momentáneamente capturado por un atomo de cobre que acaba de perder su electrón exterior, pero casi instantáneamente se desprende del mismo y es empujado a lo largo del hilo hacia otro, al mismo tiempo que repele los electrones situados delante de él. Estos electrones, a su vez, repelen a los que preceden. Este empuje se hace patente a lo largo de todo el hilo, de forma que, casi instantáneamente los electrones son impulsados hacia el otro extremo del hilo y penetran en el terminal positivo del generador.
MAGNETISMO

El magnetismo es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influenciados, de mayor o menor forma, por la presencia de un campo magnético.


El magnetismo también tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la radiación electromagnética, como por ejemplo, la luz.
Cada electrón es, por su naturaleza, un pequeño imán (véase Momento dipolar magnético electrónico). Ordinariamente, innumerables electrones de un material están orientados aleatoriamente en diferentes direcciones, pero en un imán casi todos los electrones tienden a orientarse en la misma dirección, creando una fuerza magnética grande o pequeña dependiendo del número de electrones que estén orientados.


Además del campo magnético intrínseco del electrón, algunas veces hay que contar también con el campo magnético debido al movimiento orbital del electrón alrededor del núcleo. Este efecto es análogo al campo generado por una corriente eléctrica que circula por una bobina (ver dipolo magnético). De nuevo, en general el movimiento de los electrones no da lugar a un campo magnético en el material, pero en ciertas condiciones los movimientos pueden alinearse y producir un campo magnético total medible.


El comportamiento magnético de un material depende de la estructura del material y, particularmente, de la configuración electrónica


historia:Los fenómenos magnéticos fueron conocidos por los antiguos griegos. Se dice que por primera vez se observaron en la ciudad de Magnesia del Meandro en Asia Menor, de ahí el término magnetismo. Sabían que ciertas piedras atraían el hierro, y que los trocitos de hierro atraídos atraían a su vez a otros. Estas se denominaron imanes naturales.[cita requerida]


El primer filósofo que estudió el fenómeno del magnetismo fue Tales de Mileto, filósofo griego que vivió entre 625 a. C. y 545 a. C.[1] En China, la primera referencia a este fenómeno se encuentra en un manuscrito del siglo IV a. C. titulado Libro del amo del valle del diablo: «La magnetita atrae al hierro hacia sí o es atraída por éste».[2] La primera mención sobre la atracción de una aguja aparece en un trabajo realizado entre los años 20 y 100 de nuestra era: «La magnetita atrae a la aguja».


El científico Shen Kua (1031-1095) escribió sobre la brújula de aguja magnética y mejoró la precisión en la navegación empleando el concepto astronómico del norte absoluto. Hacia el siglo XII los chinos ya habían desarrollado la técnica lo suficiente como para utilizar la brújula para mejorar la navegación. Alexander Neckham fue el primer europeo en conseguir desarrollar esta técnica en 1187.


El conocimiento del magnetismo se mantuvo limitado a los imanes, hasta que en 1820, Hans Christian Ørsted, profesor de la Universidad de Copenhague, descubrió que un hilo conductor sobre el que circulaba una corriente ejercía una perturbación magnética a su alrededor, que llegaba a poder mover una aguja magnética situada en ese entorno.[3] Muchos otros experimentos siguieron con André-Marie Ampère, Carl Friedrich Gauss, Michael Faraday y otros que encontraron vínculos entre el magnetismo y la electricidad. James Clerk Maxwell sintetizó y explicó estas observaciones en sus ecuaciones de Maxwell. Unificó el magnetismo y la electricidad en un solo campo, el electromagnetismo. En 1905, Einstein usó estas leyes para comprobar su teoría de la relatividad especial,[4] en el proceso mostró que la electricidad y el magnetismo estaban fundamentalmente vinculadas.


El electromagnetismo continuó desarrollándose en el siglo XX, siendo incorporado en las teorías más fundamentales, como la teoría de campo de gauge, electrodinámica cuántica, teoría electrodébil y, finalmente, en el modelo estándar.
electro magnetismo
Desde el siglo VI a. C. ya se conocía que el óxido ferroso-férrico, al que los antiguos llamaron magnetita, poseía la propiedad de atraer partículas de hierro. Hoy en día la magnetita se conoce como imán natural y a la propiedad que tiene de atraer los metales se le denomina “magnetismo”.


Los chinos fueron los primeros en descubrir que cuando se le permitía a un trozo de magnetita girar libremente, ésta señalaba siempre a una misma dirección; sin embargo, hasta mucho tiempo después esa característica no se aprovechó como medio de orientación. Los primeros que le dieron uso práctico a la magnetita en función de brújula para orientarse durante la navegación fueron los árabes.


Como todos sabemos, la Tierra constituye un gigantesco imán natural; por tanto, la magnetita o cualquier otro tipo de imán o elemento magnético que gire libremente sobre un plano paralelo a su superficie, tal como lo hace una brújula, apuntará siempre al polo norte magnético. Como aclaración hay que diferenciar el polo norte magnético de la Tierra del Polo Norte geográfico. El Polo Norte geográfico es el punto donde coinciden todos los meridianos que dividen la Tierra, al igual que ocurre con el Polo Sur.


Sin embargo, el polo norte magnético se encuentra situado a 1 200 kilómetos de distancia del norte geográfico, en las coordenadas 78º 50´ N (latitud Norte) y 104º 40´ W (longitud Oeste), aproximadamente sobre la isla Amund Ringness, lugar hacia donde apunta siempre la aguja de la brújula y no hacia el norte geográfico, como algunas personas erróneamente creen.


El electromagnetismo es una rama de la Física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos fueron sentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell. La formulación consiste en cuatro ecuaciones diferenciales vectoriales que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales (corriente eléctrica, polarización eléctrica y polarización magnética), conocidas como ecuaciones de Maxwell.


El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe los fenómenos físicos macroscópicos en los cuales intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre las sustancias sólidas, líquidas y gaseosas. Por ser una teoría macroscópica, es decir, aplicable sólo a un número muy grande de partículas y a distancias grandes respecto de las dimensiones de éstas, el Electromagnetismo no describe los fenómenos atómicos y moleculares, para los que es necesario usar la Mecánica Cuántica.